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ABSTRACT 

In this paper is proposed a new approach for the computation of the complexity of air traffic 

situations by designing an intrinsic metric through the introduction of an Equivalent Spatial distance 

between aircraft, a Traffic Connectivity Graph and a criticality function.  
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1. INTRODUCTION 

Along the last decades Air Traffic 

Management (ATM) systems are challenging a 

sustained increasing traffic volume and traffic 

complexity, that push them up to their limits. 

The concept of air traffic complexity has been 

linked to the difference between theoretical 

and operational capacity of a given sector, i.e. 

the instant maximum number of aircraft that a 

traffic controller is capable to handle. It has 

been considered that an air traffic controller 

(ATCO) workload, one of the main capacity 

limiting factors, has two dimensions: 

• The human factor dimension in relation 

with the cognitive performances of ATCOs. 

• An intrinsic complexity associated to 

the geometry and the density of air traffic.  

Air Traffic Management (ATM) is under 

the perspective of undergoing major changes 

as results of some research programs such as 

the NextGen program of the Federal Aviation 

Administration in United States and the Single 

European Sky ATM Research Program of 

Eurocontrol (CESAR). The main goal of these 

programs is to develop future technologies 

promoting ATC automation that will 

efficiently help to cope more and more with 

traffic growth.  

The concept of air traffic complexity has 

been introduced initially to estimate the 

difficulty and effort needed by ATCOs to 

safely manage air traffic leading to consider a 

large list of parameters building up the 

complexity. For instance in (Laudeman et al., 

1998) are listed the following parameters 

attached to each aircraft in the considered 

traffic: heading changes,  speed changes,  

altitude changes, number of other aircraft with 

minimum distance 0-5 nm aircraft, minimum 

distance 5-10 nm, number of predicted 

conflicts 0-25 nm, 25-40 nm and 40-70 nm at 

the end of a two minute sample interval. Other 

(Djokic et al., 2009) have established a list of 

complexity factors such as the number of 

aircraft, the number of climbing/descending 

aircraft, the number of aircraft with lateral 

distance between 0 and 25 nm and vertical 

separation less than 2000 ft above FL290, the 

variance of ground speed, a density indicator, 

the variability of headings and speed, the 

presence of divergence/convergence between 

pairs of aircraft and sensitivity/insensitivity 

indicators. The perspective of increased 

automation in ATC/ATM has led to new 

requirements. For instance, in (Prandini et al., 

2012) a list of relevant requirements for a 

complexity air traffic metric for future ATM 

systems is proposed, including: 

- accounting for traffic dynamics besides 

density, 

- independency with respect to the 

airspace structure, 

- looking ahead with respect to the time 

horizon, 

- measuring the effort involved is safely 

handling air traffic, 

- revealing critical encounter situations, 

- providing local as well as global 

information about air traffic 

complexity, 

- resulting in a sustainable computational 

burden. 

while interest for intrinsic metrics, i.e., those 

which are based on geometrical properties over 

time of air traffic (Delahaye & Puechmorel, 

2010) has grown these last years. Some 

intrinsic metrics have already been proposed in 

the literature, but such solutions can present 

limitations concerning expected properties 

such as continuity, additivity and scalability. In 

this study we propose a new metric based on 

graph theory to circumvent these possible 

limitations. 

2. BACKGROUND 

Adopted assumptions 

Here mainly en-route traffic is considered over 

a large area of traffic independently of possibly 

pre-existing traffic sectors. The space 

considered can be either the coverage of the 

screen of an air traffic control position 

(digitalized radar screen) or a much larger area 

covering different traffic sectors of adjacent 

national airspaces. Let AC(k) be the set of 

aircraft present in this airspace at instant k. 

The estimated position and speed of 

each aircraft at current time as well as its 

predicted trajectory for the next T period of 

time, where T is the ATC tactical planning 

horizon, are supposed available. This predicted 
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trajectory is in general produced by the 

navigation function of an on-board FMS. 

A time step T measured in seconds, is 

considered which is greater that the reaction 

time of a pilot but much smaller that the Traffic 

Advisory and Traffic Resolution delays of 

modern TCAS (Traffic Conflict Avoidance 

System). So, the time tick is such as tk+1 = tk + 

∆𝑇. 

Subsonic lower and upper speed 

reference values, Vmin and Vmax, are adopted for 

the considered airspace, for example 

respectively 250 kt and 500 kt. NT type of 

aircraft with respect to climb/descent/cruise 

speed performances are considered and typical 

climb/descent rates CLs/DSs , s = 1, …, NT, 

expressed in feet per minute are considered. 

Let lgA(k), ltA(k), hA(k) be respectively 

the longitude, latitude and flight altitude level 

of aircraft A. Taking an Earth centric Cartesian 

reference frame, the corresponding coordinates 

xA(k), yA(k), zA(k) expressed in meters can be 

computed. When at time k the updated planned 

trajectories of the aircraft are available 

between time k and time k+T where T is the 

tactical planning horizon, it will be possible to 

compute for each aircraft the trajectory during 

this time horizon: 

xa(h), ya(h), za(h)    aAC(h) 𝑘 ≤ ℎ ≤

𝑘 + 𝑇 

 

(1) 

The current speed of these aircraft are given in 

the same reference frame by: 

𝑥̇a(k), 𝑦̇a(k), 𝑧̇a(k)    aAC(k) (2) 

 

Equivalent spatial distance between two 

aircraft 

At a given time k, an aircraft is either level, 

climbing or descending. The distance between 

two aircraft flying at the same level is quite 

clear and an Euclidian distance can be used. 

However, the distance between two aircraft 

flying at different flight levels and altitudes and 

performing or not vertical maneuvers is a more 

complex issue. It appears that the difference in 

time scale when comparing vertical and 

longitudinal maneuvers of aircraft should be 

taken into consideration specially when 

considering that time margin before encounter 

is a fundamental issue in the perspective of air 

traffic control. Considering the different 

configurations of flight (level, climb, descent) 

and types of involved aircraft, up to eighteen 

different traffic situations can be considered.  

Here an equivalent vertical distance between 

two aircraft is introduced to cope with the 

above consideration. For that, let be two 

aircraft at time k, aircraft A of type sA flying at 

altitude zA(k)and aircraft B of type sB flying at 

altitude zB(k) with zA(k) > zB(k). A lower time 

duration for these aircraft reaching the same 

altitude is given by: 

𝑇𝐴𝐵
𝑚𝑖𝑛(𝑘) =

𝑧𝐴(𝑘) − 𝑧𝐵(𝑘)

𝐷𝑆𝑠𝐴
+ 𝐶𝐿𝑠𝐵

 

 

(3) 

This lower bound does not take into 

account the time lags to eventually initiate the 

climb or descent maneuvers. So, the above 

formula can be corrected according to the flight 

configurations and performances of the two 

aircraft. For example, if at time k aircraft A is 

level flight and aircraft B is already climbing 

(Figure 1), formula (3) may be corrected to 

(4c): 

𝛼 = 𝐶𝐿𝐵
0 ∙ 𝑑𝑠𝐵

𝐶ℎ𝐶𝑙 (4a) 

𝛽 =  (𝑑𝑠𝐴
𝑆𝑡𝐷𝑠 − 𝑑𝑠𝐵

𝐶ℎ𝐶𝑙) ∙ 𝐶𝐿𝑠𝐵
 (4b) 

𝑇𝐴𝐵
𝑚𝑖𝑛(𝑘) =

𝑧𝐴(𝑘) − 𝑧𝐵(𝑘) − 𝛼 − 𝛽

𝐷𝑆𝑠𝐴
+ 𝐶𝐿𝑠𝐵

 

 

(4c) 

 

where 𝐶𝐿𝐵
0 is the initial climb rate of aircraft B,  

𝑑𝑠𝐵
𝐶ℎ𝐶𝑙 is the time delay to change the rate of 

climbing for aircraft type sB and  𝑑𝑠𝐴
𝑆𝑡𝐷𝑠is the 

time delay for aircraft type sA to start a descent 

maneuver. Here it is supposed that 𝑑𝑠𝐵
𝐶ℎ𝐶𝑙is 

smaller than 𝑑𝑠𝐴
𝑆𝑡𝐷𝑠, otherwise the formula can 

be modified accordingly. 

The time related equivalent vertical 

distance between aircraft A and B is here 

defined by (5): 

∆𝑧𝐴𝐵(𝑘) = 𝑇𝐴𝐵
𝑚𝑖𝑛(𝑘) ∙ 𝑉𝑚𝑖𝑛 (5*) 
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Figure 1 Minimum delay to common level rejoinder.  

 

Finally, the equivalent spatial (ES) 

distance between the two aircraft is given in 

meters by the semi Euclidian distance (5c): 

 

Note the in relation (*) we had to choose 

arbitrarily a lower limit for the speed to get a 

lower value of the altitude difference to keep 

safer. Another approach of interest could be to 

consider instead of a spatial distance between 

two aircraft, their temporal distance defined as 

the minimum time to get either an encounter 

between them or to reach a declared conflict 

distance between them. 

3. TRAFFIC CONNECTIVITY GRAPH 

(TCG) 

Construction and analysis 

At time k, a traffic connectivity graph given by 

G(k) = [V(k), E(k)] where V(k) is the set of 

vertices and E(k) is the set of edges between 

these vertices. The vertices, vV(k), are 

associated to the aircraft present at that time in 

the studied airspace. Let a threshold ES 

distance 𝐷𝑚𝑎𝑥
𝑠𝐴𝑠𝐵 be a maximum ES distance so 

that two aircraft A and B can be considered 

connected. The value of this distance depends 

of the type of involved aircraft and is set 

according to the necessity by the ATC system 

to anticipate their relative movement when 

dealing with air traffic at a given time. There is 

an edge (A, B)  E(k) between the two vertices 

associated to aircraft A and B when their ES 

distance is shorter than 𝐷𝑚𝑎𝑥
𝑠𝐴𝑠𝐵which is a 

distance threshold: 

 

𝐷𝐴𝐵(𝑘) ≤ 𝐷𝑚𝑎𝑥
𝑠𝐴𝑠𝐵 (6) 

 

To avoid abrupt appearance or disappearance 

of an edge when distance evolves around Dmax, 

the above constraint can be replaced by a fuzzy 

constraint (Ross, 2010). Then to each pair of 

aircraft A and B can be attached a membership 

degree 𝜇𝐴𝐵(𝑘) as represented in Figure 2 

where 𝐷𝑚𝑎𝑥
𝑠𝐴𝑠𝐵−and 𝐷𝑚𝑎𝑥

𝑠𝐴𝑠𝐵+are the lower and 

supper limits of the transition distance between 

considering or not the interaction between 

aircraft. 

 

Figure 2 Membership degree attached to a pair of 

aircraft. 

In the following only pairs of aircraft 

and associated edges of the TCG such as 

𝜇AB(k) > 0 will be considered. The resulting 

graph may be either connected or composed of 

different connected components.  

When some aircraft are considered in 

interaction as defined above, to avoid creating 

new conflicts by solving some others, ATC has 

to consider globally this subset of aircraft. This 

leads to distinguish in the TCG not only its 

connected components but within them their 

building cliques. Then it appears of interest to 

build the minimum clique cover of this graph 

where each clique is associated to a traffic 

bundle. To each clique can be attached a 

membership degree which is the product of the 

membership degrees of its connections. 

In graph theory algorithms are available 

to build the connected components of a graph 

(Tremaux’s algorithm of polynomial 

complexity). Algorithms to perform the 

Δ𝑥(𝑘)
2 = (𝑥𝐴(𝑘) − 𝑥𝐵(𝑘))²   (5a) 

Δ𝑦(𝑘)
2 = (𝑦𝐴(𝑘) − 𝑦𝐵(𝑘))² (5b) 

𝐷𝐴𝐵(𝑘)

= √Δ𝑥(𝑘)
2 + Δ𝑦(𝑘)

2 +  ∆𝑧𝐴𝐵(𝑘)2 
(5c) 
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partition of a graph in a minimum number of 

cliques are NP-hard but returning to the 

cartesian coordinates of the position of the 

aircraft it is easy to design an algorithm of 

polynomial complexity to build this partition. 

Then the TCG at instant k, G(k), is 

characterized by Nco(k) connectivity 

components and by for each connectivity 

component, j= 1 to Nco(k), by the number of 

maximum cliques partitioning this 

connectivity components Nclj. Let 𝑁𝑣𝑗
𝑚(𝑘) be 

the number of vertices in the mth clique. Figure 

3 represents this three levels decomposition of 

the TCG. Then it is also possible to associate 

to each vertex (aircraft) a, the set Ca of 

maximum cliques (traffic bundles) to which it 

belongs. 

 

Figure 3 Hierarchical view of the Traffic 

Connectivity Graph. 

 

Observe that to an isolated aircraft 

corresponds a connectivity component and a 

maximum clique composed of itself, maximum 

cliques may be composed of only two vertices 

and a vertex may belongs to different 

maximum cliques, that means that an aircraft 

may interact with more than one bundle of 

aircraft.   

 

Figure 4 Example of TCG with maximum clique 

decomposition. 

In Figure 4, an example of air traffic 

configuration from (Isufaj et al., 2021) is used 

to illustrate the maximum clique 

decomposition of the TCG where aircraft 

connected by the same colour link belong to a 

same maximum clique. 

 

Edge complexity of graphs and air traffic 

complexity 

 

A basic measure used in graph complexity 

theory (Even & Even, 2012) is the number of 

edges. Here we will consider the edges with 

their associated membership degree. Let  eG(k) 

be this number in G(k), defined as in (7): 

𝑒𝐺(𝑘) = ∑ 𝜇𝑖𝑗

𝑖,𝑗∈𝑉(𝑘),𝑖≠𝑗

(𝑘) 
(7) 

This number is such that: 

0 ≤ 𝑒𝐺(𝑘) ≤ 𝐶|𝑉(𝑘)|
2 =|𝑉(𝑘)| ∙ (|𝑉(𝑘)| − 1)/2 

When eG(k) = 0, there is no need for 

ATC to take into account any interaction 

between the aircraft. This situation may happen 

when the considered airspace is large and 

presents a low density of aircraft. In that case 

the complexity of traffic is low but not zero 

because the ATC has to follow-up all these 

aircraft. When  𝑒𝐺(𝑘) = 𝐶𝑉(𝑘)
2 , ATC assess the 

traffic situation by considering the interaction 

of all aircraft between them. This situation may 

happen when the considered airspace is quite 

reduced and presents a high density of aircraft. 

However, this does not mean that ATC has 

necessarily to take complex decisions. 

Figure 5a and Figure 5b represent two 

situations where  𝑒𝐺(𝑘) = 𝐶𝑉(𝑘)
2 . In Figure 5a 

there is no perspective of conflict between the 

aircraft although they are close to each other 

while in Figure 5b, imminence of a global 

conflict will force ATC to redirect traffic. 

 

 

 

 

 

 

 

(a)                                           (b) 
 

Figure 5 (a) Diverging bundle and (b) Converging 

bundle. 
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So, it appears that proximity is not 

sufficient to characterize complexity and other 

ingredients should be introduced in the 

complexity assessment of a traffic situation. A 

complexity metrics should be an increasing 

function of the number of aircraft (awareness 

of each aircraft by ATC), of the number of 

interactions between aircraft (awareness of 

proximity between aircraft by ATC), of the 

intensity of the interactions and of the 

perspective or imminence of conflicts 

(awareness of conflicts by ATC). 

4. THE PROPOSED COMPLEXITY 

METRICS 

Criticality of separation between two 

aircraft 

Here is introduced a new function H(x) 

defined over R+-{0} from a truncated 

logarithm function as:  

𝐻(𝑥) = − ∙ 𝑙𝑛 𝑥         𝑖𝑓  0 < 𝑥 ≤ 1 (8a) 

𝐻(𝑥) = 0          𝑖𝑓 𝑥 > 1 (8b) 

where  is a positive parameter. 

A threshold distance 𝐷𝑐

𝑠𝑖𝑠𝑗
 below which 

it is considered that i j aircraft separation is 

under danger and demand an increased 

attention from ATC, is introduced as well as a 

reduced variable δij such as: 

𝛿𝑖𝑗 = 𝐷𝑖𝑗(𝑘)/𝐷𝑐

𝑠𝑖𝑠𝑗
 (9) 

where Dij (k) is the ES distance between aircraft 

i and j at instant k. It is expected, considering 

the definition of 𝐷𝑚𝑎𝑥

𝑠𝑖𝑠𝑗−
 that it is larger than or 

equal to 𝐷𝑐

𝑠𝑖𝑠𝑗
. 

Here it is assumed that the criticality level of 

the current separation between aircraft i and j 

is given by: 

Crij = H(ij) (10) 

Then, if at instant k aircraft i and j are 

associated with the vertex of a common 

maximum clique in G(k): 

Crij(k) =-∙ 𝑙𝑛 (𝛿𝑖𝑗(𝑘))    (11) 

with Crij(k) = 0 when 𝛿𝑖𝑗(𝑘) = 1 if they do not 

belong to some common maximum clique then 

Crij(k) = 0. To fix the value of the parameter , 

let 𝐷
𝑚𝑖𝑛

𝑠𝑖𝑠𝑗
< 𝐷𝑐

𝑠𝑖𝑠𝑗
 be the distance at which a 

conflict between two aircraft i and j is 

definitely declared and ATC needs to interfere. 

Assuming that the criticality level is equal to dc 

in this situation. Then: 

 = 𝑑𝑐/ 𝑙𝑛(
𝐷𝑐

𝑠𝑖𝑠𝑗

𝐷
𝑚𝑖𝑛

𝑠𝑖𝑠𝑗
) 

(12) 

 

Assuming that the ratio 
𝐷𝑐

𝑠𝑖𝑠𝑗

𝐷
𝑚𝑖𝑛

𝑠𝑖𝑠𝑗
  is constant for any 

pair of aircraft types and equal to  with  > 1, 

then  = 𝑑𝑐/ 𝑙𝑛(). 

 

Figure 6 gives a view of function H(x). 

 

Figure 6 Graphical representation of function H(x). 

 

Here, since when 𝛿ij(𝑘) = 0, there is a 

collision and when 𝛿𝑖𝑗(𝑘) = 1 there is no 

potential collision between aircraft i and j, this 

reduced distance can be seen as an a priori 

probability of no conflict between these two 

aircraft for ATC, the a posteriori probability 

taking into account the speed vectors of these 

two aircraft.  

Looking ahead for the criticality of an 

interaction between two aircraft i and j from the 

same clique, a one-step prediction can be 

computed for their criticality: 

Crij(k+1) =-∙ 𝑙𝑛 (𝛿ij(𝑘 + 1)) ≈ − ∙

𝑙𝑛 (𝛿ij(𝑘) + 𝛿̇ij(𝑘) ∙ ∆𝑇) 
(13) 

 

when 
𝛿̇ij(k)

𝛿ij(k)
∙ ∆𝑇 ≪ 1, we get: 
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Crii(k+1) ≈ − ∙ 𝑙𝑛 (𝛿ij(𝑘) (1 +
𝛿̇ij(𝑘)

𝛿ij(𝑘)
∙

∆𝑇)) ≈ 𝐶𝑟𝑖𝑗(𝑘) −  ∙
̇ij(𝑘)

𝛿ij(𝑘)
∙ ∆𝑇 

(14) 

Since: 

̇𝑖𝑗(𝑘)

𝛿𝑖𝑗(𝑘)
=

𝐷̇𝑖𝑗(𝑘)

𝐷𝑖𝑗(𝑘)
 (15) 

 

this ratio is independent of Dc.  

For example, with Ḋij(k) = 250 kt, 

Dij(k) = 20 nm, T = 20s, 
𝛿̇ij(k)

𝛿ij(k)
∙ ∆𝑇 = 0.065 

and the first order logarithm approximation 

generates a 3% error. Then, in many cases, the 

quantity − ∙
̇𝑖𝑗(𝑘)

𝛿𝑖𝑗(𝑘)
 is a first order 

approximation of the derivative with respect to 

time of the criticality of pair i-j.  

The derivative ̇𝑖𝑗(𝑘) can be computed 

directly from the current speed vectors of 

aircraft i and j. For example, if zi(k)> zj(k): 

̇𝑖𝑗(𝑘) = ((𝑥𝑖(𝑘) − 𝑥𝑗(𝑘)) ∙ (𝑥̇𝑖(𝑘) − 𝑥̇𝑗(𝑘))

+ (𝑦𝑖(𝑘) − 𝑦𝑗(𝑘))

∙ (𝑦̇𝑖(𝑘) − 𝑦̇𝑗(𝑘)) + ∆𝑧𝑖𝑗(𝑘)

∙ ((𝑧̇𝑖(𝑘) − 𝑧̇𝑗(𝑘)) /(𝐷𝑆𝑠𝑖

+ 𝐶𝐿𝑠𝑗
))) /𝛿𝑖𝑗(𝑘) 

(16) 

The proposed complexity metrics 

The complexity assigned to a pair of aircraft in 

interaction is defined here as: 

 

𝐶𝑖𝑗(k) = 𝜇𝑖𝑗(𝑘)(1 +𝐶𝑟𝑖𝑗(𝛿ij(𝑘) +  𝛿̇ij(𝑘)∆𝑇))(17) 

  

The first term is relative to the 

awareness by ATC of the interaction between 

aircraft i and j. If no criticality between these 

two aircraft is currently present or is expected 

in the next time period T, complexity will 

remain equal or inferior to unity. Otherwise, 

complexity will increase with the present or 

expected reduced distance between these 

aircraft.  

If the tendency of distance is to 

increase, this complexity will decrease and 

when their distance becomes superior to 𝐷𝑐

𝑠𝑖𝑠𝑗
, 

the complexity will become equal to unity. If 

the reduced distance ij(k) increases beyond 

𝐷𝑚𝑎𝑥

𝑠𝑖𝑠𝑗−/𝐷𝑐

𝑠𝑖𝑠𝑗
, complexity decreases and goes to 

zero when ij(k) ≥ 𝐷𝑚𝑎𝑥

𝑠𝑖𝑠𝑗+/𝐷𝑐

𝑠𝑖𝑠𝑗
. This function 

is represented in Figure 5. 

 

Figure 7  Graphical representation of function H(ij). 

 

Here: 

𝛼 − 𝛽 ≈ 𝛽 − 𝛾 ≈ − ∙
̇𝑖𝑗(𝑘)

𝛿𝑖𝑗(𝑘)
∙ ∆𝑇 

 
(18) 

The complexity of traffic around 

aircraft i is then given by: 

𝐶𝑖(𝑘) = ∑ 𝐶𝑖𝑗(𝑘)

𝑗:𝐷𝑖𝑗(𝑘)/𝐷𝑐

𝑠𝑖𝑠𝑗
≤1

 

 

(19) 

 

Observe that the set of vertices 

{𝑗: 𝐷
𝑖𝑗

𝑠𝑖𝑠𝑗(𝑘) ≤ 𝐷𝑐

𝑠𝑖𝑠𝑗} is the union of the 

vertices of the cliques to which vertex i 

belongs. This allows to construct a dynamic 

map of complexity by assigning to each aircraft 

present in the considered airspace its 

complexity index at each instant. 

Here considering the TCG at instant k, 

the complexity associated to a clique c 

corresponding to Nc aircraft in interaction is 
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given by the addition of the complexity levels 

of its edge components: 

𝐶𝐶𝑐(𝑘) = = ∑ 𝜇𝑖𝑗(i,j)ϵClique c,i≠j (𝑘)CNc

2  

−(


2
) ∙ ∑ 𝑙𝑛(𝛿𝑖𝑗(𝑘) +(𝑖,𝑗) ∈𝐶𝑙𝑖𝑞𝑢𝑒 𝑐,𝑖≠𝑗

𝛿̇𝑖𝑗(𝑘) ∙ ∆𝑇) 

(20) 

The complexity associated to a 

connected component cc of the TCG at instant 

k is given by the addition of the complexity 

level attached to each edge of the connected 

component: 

CCCcc(k) = ∑ 𝐶𝑖𝑗(𝑘)(𝑖,𝑗)∈𝑐𝑐  (21) 

Finally, a complexity index associated 

to the whole traffic at instant k is given by: 

CT(k) = max
𝑐𝑐

𝐶𝐶𝐶𝑐𝑐(𝑘) (22) 

Here the max operator is used since the 

whole air traffic control situation is split at a 

given instant into separate independent 

problems, the more complex giving the overall 

complexity assessment.  

5. CONCLUSION 

In this study we have proposed a new intrinsic 

metric based on graph theory for air traffic 

complexity starting from different theoretical 

considerations than those of existing 

approaches.  

A procedure is created to dynamically 

generate, from flight plans and current 

positions of given traffic, connectivity graphs 

between evolving aircraft. The proposed 

metric can be used locally or more globally, 

can be applied to assess the complexity of 

traffic around a given aircraft or within a given 

bundle of aircraft. This should allow to answer 

questions, such as «what is the intrinsic 

complexity of current air traffic configuration? 

» or, « what is the robustness/elasticity of a 

traffic situation? » or, « what is the criticality 

of a traffic situation? » through the 

development of new interface with the ATCO. 
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