
AN ONTOLOGY TO SUPPORT BRAZILIAN TRAFFIC FLOW
MANAGEMENT BASED ON NASA’s ATM REFERENCE MODEL

Luís Antonio de Almeida Rodriguez, José Maria Parente de Oliveira
Aeronautics Institute of Technology

rodriguezlaar@gmail.com, parente@ita.br

PAPER ID: SIT178

ABSTRACT

Time over the past two decades has shown different data models being introduced to try to
standardize information for interoperability in the aviation domain. World’s aviation organizations
are rushing to maximize the efficiency of data exchange and actual initiatives like SWIM
recommend the use of semantic knowledge descriptions to support air-traffic management
information systems. The use of ontologies is increasing as a next step in aviation's data structures
evolution, describing semantics (concepts, properties and relationships) and being conceived in
machine-readable language, able to be accessed via programming languages. This paper presents an
OWL-DL Ontology to support Air Traffic Flow Management based on NASA’s ATM (Air Traffic
Management) reference model. The original RDF files from NASA’s release are the core of the
implemented ontology, which was built to adapt NASA’s taxonomy to Brazilian aeronautical laws
and rules. Furthermore, the paper presents a set of experimental results which were carried out to
manipulate the Brazilian customized ontology by using Python language and making CRUD
(Create, Read, Update, and Delete) operations. In addition, the experiments show how to fill out and
persist a flight plan form to simulate a pilot and an aeronautical information system interacting for a
flight authorization.

Keywords: Ontology, NASA’s atmontocore, machine-readable language, OWL.

ACKNOWLEDGMENTS

We would like to thank all the institutions involved in this work for their support:Aeronautics Institute
of Technology - ITA, Air Navigation Institute (ICEA), Airspace Control Department (DECEA), and the
National Council for Scientific and Technological Development – CNPq.

mailto:email@correspondingauthor.com

1 INTRODUCTION
The next generation of the worldwide air

transportation system is an important subject of
a lot of research by national airspace teams in
several countries (SWIM, 2022). Civil aviation
authorities all around the globe are rushing to
integrate systems with the FAA (Federal
Aviation Association) and Eurocontrol, two of
the biggest ATM organizations. It is worthy
saying that the use of reference models adopted
by these two players is spreading among ATM
software development teams.

The SWIM (System Wide Information
Management) (SWIM, 2022) Program
recommends the use of conceptual and logical
models to be adopted by any system which must
be integrated with this worldwide new reference
model. One facet of this collaborative work
among countries is to increase the information
flow efficiency of all airlines operations to
facilitate the whole civil air transportation
network. Brazilian aviation authorities are also
running to integrate their ATM systems to this
new age (DECEA, 2022).

The lack of the adoption of a single formal
data exchange model by world’s aviation is
holding back its ATM systems integration
(ICAO, 2022). Different data models must be
translated by software to share information and
the Ontologies are the artifacts which can enable
a shared understanding, using a formal way
(OWL, 2022) to build semantic descriptions
which can be used as machine-readable
knowledge cores by ATM systems.

The lack of a formal data exchange model
to describe the Brazilian Traffic Flow
Management domain is a problem since it is an
obstacle to integrate air-traffic operations
systems with those two important ATM players.
Thus, it is too expensive for Brazil and FAA or
Eurocontrol to exchange data by software. The
goal of this work is to present an
implementation of OWL-DL (OWL, 2022)
ontology based on NASA’s ATM reference
model (NASA, 2022) to serve as a formal data
exchange model to Brazilian ATM systems.

This paper is organized as follows:
Section 2 presents NASA's ATM ontology and a
related paper which presents a direct
comparison between NASA’s and the
Eurocontrol ontology. Section 3 presents the
ontology development and Python experiments

of querying and executing CRUD operations in
the ontology, aiming to validate functional
requirements and the purpose of the ontology.
Section 4 presents contributions, a brief
conclusion and further works.

2 NASA’S ATM ONTOLOGY AND A
RELATED WORK

NASA’s ATM Ontology is a conceptual
model which is implemented and released by a
work group representing FAA, NASA and some
Industry organizations using the machine-
readable languages OWL, RDF and RDFS
(W3C, 2022). It defines classes of entities and
their respective relationships considering
(NASA, 2022) the United States National
Airspace System (NAS) and the management of
the air-traffic domain.

A huge number and variety of entities
which are directly related to that domain is
represented, including classes corresponding to
flights, flight plans, aircraft, airports, weather
conditions and many others. The ontology has
become useful since it describes a variety of
information relevant to ATM operations in a
generic mode, considering information
exchange, data query and semantic search,
integration and the information standardization.

NASA’s motivation to develop this
artifact was (NASA, 2022) the need to integrate
heterogeneous forms of aviation data for
aeronautical research applying semantic
integration techniques. The ontology is released
as six different files with the “.owl” extension:
ATM.owl, NAS.owl, general.owl,
equipment.owl, data.owl and atmontocore.owl.
The ontology serves as a common source of
structured knowledge which can also be a
formal vocabulary to allow data exchange using
machine-readable language.

Data coming from multiple sources can be
transformed into ATM Ontology instances
(NASA, 2022) and can be loaded into a triple
store (data organized as subject, predicate, and
object) which can be queried and the results can
serve a specific purpose. NASA’s Ontology is
formatted and implemented as a set of RDF
(Resource Description Framework) files using
the basic knowledge of OWL (Web Ontology
language), RDF and RDFS (Resource
Description Framework Schema)(W3C, 2022).

The set of descriptions is organized into
eight major sections which describe
thematically-related sets of classes. Each one of
these is described in its own subsection:
Airspace Structures and Facilities; Navigation:
Routes, Fixes, Arrival and Departure
Procedures; Traffic Management Initiatives;
Operations: Flight, Carrier and Aircraft;
Airport and Surface Operations; Weather;
Sequences, Sub-sequences, Sequenced Itens.

The organization, specification and the
ontology development were headed by a group
of organizations including NASA and FAA,
which gave the ontology the nickname
“beauty”. The entire set of .rdf files can be
downloaded at NASA’s web page and it is
open-source for academic purposes (NASA,
2022).

Gringinger et al. (Gringinger, 2020) have
presented a comparative evaluation between
NASA’s ATM (ATMONTO) and the
Eurocontrol ontology AIRM-O, derived from
the ATM Information Reference Model (AIRM)
(AIRM, 2022). The authors have established a
comparative mapping between those artifacts in
an effort to capture the concepts and semantic
relations which could be common.

Such a work presents a deep evaluation
made on both ontologies by a team of six human
experts and some automated tools. These
experts were of two types: the ones who were
pilots and ontology experts and the others who
were only ontology experts, providing this a fair
condition to evaluate the artifacts. The experts
have mapped the concept terms from
ATMONTO to AIRM-O while indicating the
degree of match using a very simple categorical
scale. After evaluating the scale of the match
among the experts, they produced another
evaluation comparing both ontologies again
using automated general-purpose ontology
matching tools.

Both automated and manual results show
there are a lot of differences in the terms
presented by both ontologies, for example, the
entity runway is described on the ATMONTO
using only five different metadata and AIRM-O
implements more than twenty entities to present
the description of the same object.

Those authors have made a huge effort to
provide a way to have some kind of
harmonization between the United States and

European aviation and they have concluded it is
not so simple and it has to be done by several-
country teams.

3 ONTOLOGY DEVELOPMENT AND
PYTHON EXPERIMENTS

Ontology Development
The idea was to focus on the problem: -

the lack of a formal data exchange model to
integrate Brazilian ATM information systems
with FAA and Eurocontrol through SWIM. So
there is a need to develop a Brazilian Formal
Air Traffic Flow Management Reference
Model. To develop the ontology, the authors
used the approach presented in (Ron & Smith,
2016) and as the technological solution to
implement this model as an ontology, using the
Web Ontology Language (OWL, 2022).

The purpose of deciding about the OWL
language was to follow SWIM specifications
(SWIM, 2022) which use this machine-readable
language to represent the ATM domain.
NASA’s and Eurocontrol’s artifacts also use
this language (Gringinger, 2020). The first step
of ontology development (Ron & Smith, 2016)
was: “to identify the primary tasks the ontology
will be designed to be able to realize and the
essence of its Domain.”

Table 1 - Competency Questions (CQ)

cq1
Is there an entity related to each of all the
required fields of the Brazilian Abbreviated
Flight Plan Form?

cq2
Can I create an instance for each of all those
fields and fill & persist a complete FP Form as
an. owl file with a specific name?

cq3 What is the Flight Plan of a specific
Pilot_In_Command ?

cq4 Can I re-open the named and persisted “.owl”
file and am I able to manipulate it?

cq5 Can I list the filled fields of the form?

In this case the authors have implemented
a set of Competency Questions (CQ) (Potoniec,
2020) to define the Functional Requirements to
implement the ontology. As in Table 1, CQ are
artifacts destined to define the questions that
must be answered by the ontology to validate it
and it was built to guide the authors to
customize NASA’s taxonomies to adapt all the
entities and business rules of Brazilian Aviation

laws contained in MCA 100-11 – (Manual do
Comando da Aeronáutica) (MCA 100-11,
2022). The Flight Plan Forms were used as a
use case into the Brazilian ATM domain and
Table 1 presents the set of CQ and they are
going to be validated using Python experiments.

After a set of functional requirements
have been specified, the next step was (Ron &
Smith, 2016) : “to identify and evaluate existing
ontologies with overlapping domains. Reuse as
far as possible the ontology content which
satisfies the defined requirements.”

The authors carried out a mapping
between those described in the Brazilian
Abbreviated Flight Plan Form (MCA 100-11,
2022) and the set of entities described by
NASA’s ontologies. The goal was to find
possible matches between the two different sets
of descriptions considering OWL Classes,
Object Properties or any other stereotype
offered by the language and used in NASA’s
files and make a complementary entities
creation to customize the original ontologies to
the Brazilian domain. NASA makes available a
manual to describe all the entities of its
ontology (NASA, 2022).

Three types of matching terms were
considered (Gringinger, 2020):

 Total Match - when the Brazilian term
of the flight plan form is exactly like a
specific term contained in the original
NASA’s taxonomy. In this case no new
entity is created and NASA’s original
OWL type is used to represent the form
field.

 Partial Match - when the Brazilian term
is similar but has some specific
difference in its essence. In this case the
authors created an inheritance
relationship and a subclass of the
original term in NASA’s file is created
with a specific name to match the
Brazilian term.

 Zero Match - when there is no term in
the original ontology which is at least
similar to the Brazilian one. In this case
a new term was created as a root Class
or Property in the TFM_BR ontology.

Figure 1 presents some of the job of
mapping Portuguese terms from MCA 100-11
form, their respective translations and NASA's
closest match entity after the comparisons. It

also presents an example of Zero Match with
the “Número” cell, which is translated and
defined into its essence, but there is no term in
NASA’s taxonomies which could define this
one.

After the mapping job the next step was
(Ron & Smith, 2016): “to arrange the whole set
of defined terms to form a backbone is-a
hierarchy, in the sense each node at a level
which is lower than the root level is connected
by a single is-a link to its parent node. The
ontology must guarantee a single inheritance.”

Figure 1 A cut of the terms mapping between
Brazilian Flight Plan Form and NASA’s terms

The authors took into consideration the
results of the mapping task to define all the
entities which would fit into NASA’s taxonomy
to provide the customization of entities and
relationships among them to Brazilian
aeronautical laws and rules. So, a new empty
ontology was created using the software Protegé
(Protegé, 2022) with the name TFM_BR
(Traffic-Flow Management BRAZIL).

The idea about TFM_BR’s core was to
import NASA’s atmontocore architecture as
presented in Figure 2. The essence of the
proposed ontology is to use NASA’s definitions
without any direct change on the original files.
The OWL language has a native stereotype
called “import” (OWL, 2022) which allows a
single ontology to make use of the taxonomy of
several other ones just by literally importing
them in its code.

Importing the whole set of NASA’s files
made it possible to use the taxonomy of all its
ontologies without making changes on any
entity of the original implementation, at the
same time it was easy to create new entities into
the new ontology to fit the domain definitions to
Brazilian features.

As shown in Figure 2, to implement
NASA’s files, we used the stereotype Import of
OWL 2 to capture the whole set of NASA’s
ontologies taxonomy and axioms. Each entity
described in red in Figure 2 represents one

ontology, which means one specific .owl file of
NASA’s last release (NASA, 2022).

To complement this import, a set of new
entities based on the term mapping job was
created to support the specific features of the
Brazilian Abbreviated Flight Plan Form exactly
as it is described by official authorities (MCA
100,11, 2022), as shown in Figure 3. The new
entities are presented in Figure 4 in bold letters
and having a “_BR” at the end of their ID, to
identify the set of non-imported objects.
<Import>http://THE_project.com/Ontologies/
NASA_atmontocore/NASA_OwlFIles_owl_xml/
ATM</Import>
<Import>http://THE_project.com/Ontologies/NASA_a
tmontocore/NASA_OwlFIles_owl_xml/NAS</
Import>
<Import>http://THE_project.comt.com/Ontologies/NA
SA_atmontocore/NASA_OwlFIles_owl_xml/
atmontoCore</Import>
<Import>http://THE_project.com/Ontologies/
NASA_atmontocore/NASA_OwlFIles_owl_xml/
data</Import>
<Import>http://THE_project.com/Ontologies/NASA_a
tmontocore/NASA_OwlFIles_owl_xml/equipment</
Import>
<Import>http://THE_project.com/Ontologies/NASA_a
tmontocore/NASA_OwlFIles_owl_xml/general</
Import>

Figure 2 Importing NASA’s ontologies to TFM_BR
Each entity (field) of the form in Figure 3

was implemented in the TFM_BR ontology
exactly as its meaning and considering the
matching level it was classified and Brazilian
business rules. The final position of all terms in
NASA’s taxonomy was defined considering the
result of the terms mapping.

Figure 3 A cut of the Abbreviated Flight Plan Form
(MCA 100 - 11, 2022)

Figure 4 presents Protegé and the set of
bold classes which were created as the result of
the positioning of the new terms into their
specific hierarchies and meanings at the original
taxonomy of NASA’s ontology. The non-bold
entities are from the original implementation.

The Brazilian ontology includes also a set of
instances (owl Individuals)(OWL, 2022)
pertaining to the ANAC_CODE Class, which
define a unique code for each pilot or any other
crew member.

Figure 4 A cut of Protegé screen and the new
classes of TFM_BR in bold

The following step was the creation of
another set of instances which would serve as
parameters to be used by the authors to make
CRUD operations (Create, Read, Update and
Delete) over the TFM_BR ontology during the
tests, as presented in the right side of Figure 4.

The new ontology can be seen as the
semantic description which serves as an core to
carry knowledge which allows a developer to
encapsulate it with a software and interact with
common airman users to satisfy their real life
goals making use of this artifact as a service.

The ontology implementation was
completed and the authors were ready to start
the Python experiments destined for ontology
validation (Potoniec, 2020).

 Python Experiments
The idea to present Python experiments is

focused on reaching the ability to manipulate
ontologies via Python executing CRUD
operations and use it to build software based on
this kind of semantic representation. The
difference from other software is that all CRUD

operations are made by using semantic objects
described by the stereotypes of OWL language,
not strings, enumerations, integer or any type
defined by programming languages.

The goals of Python experiments were:
 Program queries to be executed in the

TFM_BR ontology using the owlready2
Python library (OWLREADY 2, 2022)
to make searches whose results could
answer and validate the CQ in Table 1.

 To create a clone of the ontology
TFM_BR using Python and to fill out all
the components of the Abbreviated Fight
Plan Form (Figure 3) with specific data
to simulate a pilot asking for a Flight
Plan authorization and filling a Web
form.

After the simulation is finished, the
ontology file which describes that specific filled
Flight Plan Form must be persisted into a file
system with the .owl extension and must be re-
opened at any further moment for legal
purposes.

All the CQ were considered as the basis to
program Python queries to provide the
necessary answers. The ability to import other
ontologies taxonomies offered by the library
owlready2 is defined as (OWLREADY2, 2022):
from owlready2 import * and it will be omitted
on the code descriptions. The Python code
solutions for the CQ (Table 1) are:

 cq1 - asks for the list of all Brazilian
entities mapped and inserted into
NASA’s taxonomy. Table 2 presents a
Python script which extracts and prints
the list of new implemented Classes,
Object Properties and Individuals from
the TFM_BR implemented ontology:

Table 2 - Python script for cq1

onto =
get_ontology("http://www.deproject.com/Ontologies/TFM_B
R_and_FlightPlan_Models/TFM_BR.owl")#download from
an http address on the internet
onto.load()#puts ontology in RAM memory
onto.classes()#list Classes
onto.object_properties()#list Object Properties
onto.individuals()#list Instances (Individuals)
or (another way to do it)
print(onto.search(iri = "*_BR"))#search for the new entities

The shell result after running this script is
presented in Table 3. It is possible to see the
reference “_BR” at the end of all of the non-
imported entities.

Table 3 - Python shell result for cq1

[TFM_BR.AH_2, TFM_BR.AS_350, TFM_BR.AT_27,
TFM_BR.Boeing_737_800, TFM_BR.Boeing_787_800,
TFM_BR.C_95, TFM_BR.C_99, TFM_BR.F_5,
TFM_BR.F_5M,
TFM_BR.TFM_BR.WakeCategory_BR_M]
[TFM_BR.AircraftColours_BR,
TFM_BR.AircraftMarkings_BR,
TFM_BR.Aircraft_COM_NAV_Equip_BR,
TFM_BR.Aircraft_Type_BR,
TFM_BR.Aircraft_Wake_Category_BR,
TFM_BR.Brazilian_Airport_BR,
TFM_BR.CPF_Code_BR, TFM_BR.Call_Sign_BR,
TFM_BR.Credicard_Code_BR,
TFM_BR.DinghieColour_BR,
TFM_BR.Flight_Plan_BR, TFM_BR.Flight_Rules_BR,
TFM_BR.Flight_Type_BR,
TFM_BR.Pilot_In_Command_BR,
TFM_BR.Second_Pilot_BR, TFM_BR.Waypoint_BR,
TFM_BR.anac_code_CPF_BR, TFM_BR.filledBy_BR,
TFM_BR.hasACFTColours_BR,
TFM_BR.hasACFTMarkings_BR,
TFM_BR.hasAircraftType_BR,
TFM_BR.hasAnacCode_BR,
TFM_BR.hasCOM_NAV_Equip_BR,
TFM_BR.hasCpf_BR,
TFM_BR.hasDinghieCoverColours_BR,
TFM_BR.hasFillingDay_BR,
TFM_BR.hasFlightDay_BR,
TFM_BR.hasFlightType_BR,
TFM_BR.hasFlight_Rules_BR,
TFM_BR.hasNASDay_BR,
TFM_BR.hasPilotInCommand_BR,
TFM_BR.hasWaypoint_BR,
TFM_BR.has_ATS_BR_Addresse_BR,
TFM_BR.has_ATS_BR_Originator_BR,
TFM_BR.has_ATS_BR_Priority_BR,
TFM_BR.has_Call_Sign_BR,
TFM_BR.isA_2nd_Alternative_Aerodrome_BR,
TFM_BR.isA_GPS_Fix_BR,
TFM_BR.isA_NDB_Fix_BR,
TFM_BR.isA_TACAN_Fix_BR,
TFM_BR.isA_VOR_Fix_BR,
TFM_BR.isAn_Airport_BR,
TFM_BR.isAn_Alternative_Aerodrome_BR,
TFM_BR.aircraft_Fuel_Flow_BR,
TFM_BR.airlineSerialNumber_BR,
TFM_BR.cruisingAltitude_BR,
TFM_BR.cruising_speed_BR,
TFM_BR.emergencyRadioCom_BR,
TFM_BR.emergencyRadioCom_UHF_243_0_BR,
TFM_BR.emergencyRadioCom_VHF_121_5_BR,
TFM_BR.personName_BR,
TFM_BR.personPassword_BR,
TFM_BR.personSignature_BR,
TFM_BR.totalEstimatedEnrouteTime_BR]

Table 3 presents the short IRI (OWL,
2022) of the results of the actions: to import
owlready 2 library, to download the TFM_BR
ontology using a HTTP address as parameter, to
put TFM_BR in RAM memory and then it will

be able to be manipulated by operating any
CRUD operation. After that, the code presents
queries about the whole set of owl entities
which were created as the result of the term
mapping job and the insertion into NASA’s
taxonomy. It is possible to observe that there is
a huge set of different owl types like Classes,
Object Properties and Individuals presented in
Table 3.

 cq2 asks to fill out the Flight Plan Form
items and to persist it. For a matter of
available space, the authors reduced the
number of items to simulate the form.
The selected items are the following:
Flight Plan, Pilot-in-command, Call
Sign, Departure Airport, Arrival Airport,
Alternative Airport, Planned Route,
ANAC_CODE, Aircraft Wake Category,
People on Board and Total Endurance.
Python code is presented in Table 4 and
Table 5:

Table 4 - Python code for cq2

onto =
get_ontology("http://www.deproject.com/Ontologies/T
FM_BR_and_FlightPlan_Models/
TFM_BR.owl")#download from http
onto.load()# put the file in RAM memory
onto.save("/home/rodriguez/Desktop/
SITRAER_2022.owl")#persist in filesystem with this
name
onto2 =
get_ontology(“///home/Desktop/Only_Dev_CodigoFon
te/SITRAER_2022_PlanoDeVoo_Ontologia_15_Agosto
_2022.owl”)#download from filesystem
onto2.load()#puts filesystem’s ontology in RAM
memory

Table 4 presents the download of the
TFM_BR from a HTTP address and the
allocation of this model in RAM memory, the
persistence of an instance (an instance is the
same file “saved as” another name) of TFM_BR
with a specific name. After that the original
ontology from the internet is destroyed because
it serves as a generic model and should not be
modified. A specific instance of the internet
ontology must be saved as another “.owl” file
and with another name to identify the file in a
history backup. The same process to download
and put the new file in RAM memory is
presented with the onto2 variable getting the file
from the Desktop to be able to manipulate the
correct persisted file.

The onto2 variable in Table 4 now is able
to allow CRUD operations and the next step

was to create the instances and relationships
among them to simulate a pilot filling those
items from Figure 3 to get a flight plan
authorization. Table 5 presents the python code
to define the values of those fields being filled
by a pilot and their relationships to the related
Flight Plan.

Table 5 - Python code for cq2

filesystem =
get_ontology("/home/rodriguez/Desktop/Only_Dev_O
WL_TEMP_Files/Teste_Ontologia_SITRAER_20_Ago.
owl").load()
fp = filesystem.Flight_Plan_BR("F_P_SITRAER")
codigo_anac =
filesystem.ANAC_CODE_BR("888888")
piloto = filesystem.Pilot_In_Command_BR("Bruce
Dickinson")
codigo_chamada =
filesystem.Call_Sign_BR("Flight_MAIDEN")
depAirp = filesystem.search(iri = "*SBGL")
arrvAirp = filesystem.search(iri = "*SBNT")
alterAirp = filesystem.search(iri = "*SBRF")
route = filesystem.search(iri = "*SJC_SITRAER")
aircraft = filesystem.search(iri = "*787")
radio = filesystem.search(iri = "radio*")
cod_ANAC = filesystem.search(“*472461”)
wake_cat = filesystem.search(“*BR_J”)
endurance = 04.50
pob = 130
fp.hasPilotInCommand_BR = [piloto]
fp.hasDepartureAirport_BR = [depAirp]
fp.hasArrivalAirport_BR = [depAirp]
fp.hasAlternateAirport_BR = [depAirp]
fp.hasCall_Sign_BR = [Flight_SITRAER]
fp.hasPlannedRoute_BR = [route]
fp.hasCOM_NAV_Equip_BR =[radio]
piloto.hasANAC_CODE_BR = [cod_ANAC]
aircraft.hasWakeCategory_BR =[wake_cat]
fp.hasPeopleOnBoard_BR =[pob]
fp.hasTotalFlightEndurance_BR = [endurance]
filesystem.save("/home/rodriguez/Desktop/
Only_Dev_OWL_TEMP_Files/
Teste_Ontologia_SITRAER_20_Ago.owl")#re-writing on
file system

Table 5 presents the creation of a set of
instances and relationships among them which
represent all the fields of the Abbreviated Flight
Plan Form (Figure 3). The process to create data
and metadata is similar to what a regular
information system is programmed to do. When
a user fills form fields on a Web page, the
system captures text on a screen and persists on
a database as a primitive data type OWL, 2022).
The authors have transformed text into semantic
knowledge, able to be identified as a precisely
defined object, with a specific meaning and ID
and inserted into a previously defined
taxonomy, becoming a semantic entity existing

on a semantically defined domain. Table 5
presents the download of the ontology that was
in the file system; it is put in RAM memory and
manipulated to create Individuals and triples
among them (OWL, 2022).

The legend:
 Brown - Python variables to

support the owlready2 methods.
 Black - owlready2 methods.
 Purple - OWL Individuals
 Orange - OWL Classes
 Blue – OWL Object Properties
 Green – OWL Datatype

Properties values
It is possible to observe that the code in

Table 5 associates all different metadata to the
specific instance of Flight_Plan_BR. It is a 1 to
N relationship to refer all the fields on the Flight
Plan Form (Figure 3) to a unique reference of a
Flight Plan, the Individual F_P_SITRAER. The
code simulates the whole process: to fill the
form, to process and to persist the owl file in the
file system to make a documents history. It is
possible to observe that the owlready2 library
mixes OWL elements with Python variables to
execute CRUD operations over the ontology.

Triples are represented in Table 5 by a
Brown - Blue - Brown line. These lines
associate two python variables and this code
creates a triple between two OWL instances, or,
two OWL Individuals to establish a meaningful
relationship, which describes business rules and
laws about Brazilian ATM features. This way it
is possible to imagine a simulation of a Flight
Plan authorization being requested, processed
and persisted as an ontology in a “.owl”
extension, able to be processed, updated or
opened by Protegé (Protegé, 2022). At the last
line it is possible to observe the ontology being
persisted with the same name to re-write the
file.

 cq3 - asks for the name of the that
specific Flight Plan associated to a Pilot
in Command filled by the user. Table 6
presents a simple query to find what is
the instance of the class Flight_Plan_BR
which is associated with
Bruce_Dickinson?
It is possible to observe the python shell

result presenting that specific instance of
Flight_Plan_BR as the answer for the python
query search().

Table 6 - Python code for cq3 - VALIDATED

cq3 = filesystem.search(onto2.hasPilotInCommand_BR =
“*Bruce_Dickinson”)
print(cq3)
#Shell result:
[TFM_BR.F_P_SITRAER]

 cq4 - asks to re-open the persisted .owl
file to show interoperability of the
ontology created for the Flight Plan
process (Table 5) with all possible future
queries.
Table 7 presents python code to re-open

the persisted file and a new kind of query, by
iri, presenting a new way to search for entities.

Table 7 - Python code for cq4 - VALIDATED

re_open =
get_ontology("/home/rodriguez/Desktop/Only_Dev_OWL_TE
MP_Files/Teste_Ontologia_SITRAER_20_Ago.owl")
re_open.load()
print(re-open.search(iri = “*SITRAER”))
#Shell result:
[TFM_BR."F_P_SITRAER"]

At this point the authors checked that all
ontologies generated by the experiments are
compatible with any kind of update using
owlready2 or Protegé.

 cq5 - asks to list all the Flight Plan Form
fields that were filled to compose the
specific instance “F_P_SITRAER”.
Python code in Table 8 presents one

query for each filled field of the Flight Plan
Form and the shell results with the short iri for
each one of them:

Table 8 - Python code for cq5 - VALIDATED

print(re-open.search(iri = “*SITRAER”))
print(re-open.search(iri = “*Dickinson”))
print(re-open.search(iri = “*_MAIDEN”))
print(re-open.search(iri = “*_787”))
print(re-open.search(iri = “*SJC_SITRAER”))
print(re-open.search(iri = “*GL”))
print(re-open.search(iri = “*NT”))
print(re-open.search(iri = “*RF”))
#Shell result:
[TFM_BR.F_P_SITRAERTFM_BR.Bruce_DickinsonTFM_
BR.Boeing_787TFM_BR.Flight_MAIDENTFM_BR.RouteSJ
C_SITRAERTFM_BR.SBGLTFM_BR.SBNTTFM_BR.SBRF]

It is possible to observe the search for
each entity by iri, which means python searches
for the real name of the Individual and it is not a
string, it is a semantic description
programmable and able to be queried like this.
This way all CQ were answered by the new
ontology and the functional requirements were
validated, the ontology does what it was
supposed to be done.

4. CONTRIBUTIONS, CONCLUSIONS AND
FURTHER WORKS

Until this point the authors developed a
set of semantic descriptions which brings some
contributions for Air Transportation and for
Software Developers Communities:

 A new extension of NASA’s ontology,
which imports the complete core of
original files and creates a new one, the
TFM_BR, which describes Brazilian
TFM domain fitting new entities into
those taxonomies;

 A new Brazilian TFM formal vocabulary
with terms and relationships defined by
the terms mapping between NASA’s
ones and those presented in the Flight
Plans Forms. It can be used by air
transportation systems as a dialect;

 A new TFM domain ontology in which
all the Brazilian terms were fitted into
NASA’s taxonomy, according to each
term's meaning and matching. It is a way
to standardize the semantic vocabulary
of all air transportation information
systems;

 A new formal data exchange model
which allows Brazilian ATM software to
share information. It can maximize
information exchange among airlines
systems;

 The ability to use the Python language to
develop software which uses ontologies
as the core of information. It improves
the quality of ATM and TFM developed
systems.
These contributions are useful to all

players of air transportation, considering
airlines, crew members and air-traffic
authorities. All information being filled on a
Web form MUST be correctly interpreted by
humans and software to reduce the risk of
accidents caused by information
misunderstoods. Air-traffic information must be
interpreted by explicit semantic meaning
because it allows developers to manipulate
semantic objects, not strings or enumerations,
like it is normally done using common
programming languages. The authors have
shown here python only interacts with the
ontology by manipulating OWL Language
stereotypes during the whole processing, or,
semantic objects.

It is possible to conclude that the fidelity
of the meaning of the processed data is very
important at this new era of air transportation,
which runs for getting more precision, sharing
ability and a less cost to exchange data. World’s
aviation needs synchronization to avoid waste
of time, of money and of people’s lives and it is
the reason for the running for semantic
descriptions like the ontology developed in this
work, which allows information systems to use
them as the core of the domain description and
get the semantic level of computing throughput.

References

OWL. Web Ontology Language. W3C
recommendation.https://www.w3.org/OWL/.
Access 06/1st/2022.

NASA. The NASA Air Traffic
Management Ontology.Technical
Documentation.Richard M. Keller.Ames
Research Center, Moffett Field, California.
June 2017.

W3C. World Wide Web Consortium.
http://www.w3.org. Access 06/1st/2022.

Protegé. A free, open-source ontology
editor and framework for building intelligent
systems.https://protege.stanford.edu/. Access
06/1st/2022.

Potoniec J.; Wi D.; Ławrynowicz A.;
Keet M. - Dataset of ontology competency
questions to SPARQL-OWL queries
translations. Data Article. Elsevier. Data in
brief 29 (2020) 105098. Contents lists

https://protege.stanford.edu/
http://www.w3.org/
https://www.w3.org/OWL/

available at ScienceDirect - Data in brief:
journal homepage:
www.elsevier.com/locate/dib.

Gringinger, E. et al. A Comparative
Study of Two Complex Ontologies in Air
Traffic Management.Research, Frequentis
AG, Vienna, Austria. Intelligent Systems
Division, NASA Ames Research Center,
Moffet Field, CA, USA. 2020.

AIRM. The ATM Information
Reference Model (AIRM). The reference
vocabulary for defining air traffic
management information

https://airm.aero/. Access 08/23/2022.
Ron R. & Smith, B. et al. Best Practices

of Ontology Development. White Paper.
CUBRC, Inc., University at Buffalo, New
York College of Technology and Institute for
Military Support to Governance. October,
2016.

SWIM - MANUAL ON SYSTEM WIDE
INFORMATION MANAGEMENT (SWIM)
CONCEPT. International Civil Aviation Organization.
999 Robert Bourassa Boulevard, Montréal, Quebec,

Canada H3C 5H7. Website
https://www.icao.int/APAC/Pages/swim.aspx. Access
06/1st/2022.

ICAO - System Wide Information
Management (SWIM), the International Civil
Aviation Organization. www.icao.int. Access
06/1st/2022.

https://www.w3.org/Submission/OWL-S/.
Access 06/01/2022.

UML2 - The Unified Modeling
Language Specification Version
2.5.1.UML®. Unified Modeling Language:
https://www.omg.org/spec/UML/2.5.1/Abo
ut-UML/. Access 06/01/2022.

DECEA. Departamento de Controle e
Espaço Aéreo. HTTP://www.decea.gov.br.
Access 06/01/2022

OWLREADY2. Python library
owlready2-0.37.
https://owlready2.readthedocs.io/en/v0.37/.
Access 06/01/2022.

https://www.omg.org/spec/UML/2.5.1/About-UML/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://www.w3.org/Submission/OWL-S/
http://www.icao.int/
https://www.icao.int/APAC/Pages/swim.aspx
https://airm.aero/
http://www.elsevier.com/locate/dib

	
	PAPER ID: SIT178
	Abstract
	acknowledgments
	2 NASA’s ATM ONTOLOGY AND A RELATED WORK
	3 ONTOLOGY DEVELOPMENT AND PYTHON EXPERIMENTS
	References
	OWL. Web Ontology Language. W3C recommendation.https://www.w3.org/OWL/. Access 06/1st/2022.

