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ABSTRACT

Urban Air Mobility (UAM) is an emerging form of transportation that is expected to introduce
novel flight networks into already busy and complex airspace surrounding major cities and metropoli-
tan regions. This paper studies the dynamics of urban airspace use by conventional aircraft over the
Sao Paulo metropolitan region in order to identify and predict which airspace volumes are least con-
strained and best accessible for future UAM flights. Using historical flight tracking data, clustering
analysis is first performed to identify departure and arrival trajectory patterns flown by conventional
traffic at the two major airports — Sao Paulo/Guarulhos International airport and Sao Paulo/Congonhas
airport. We then create a probabilistic model of the spatiotemporal distribution of air traffic un-
der known meteorological conditions, which enables the prediction of active procedures, their spatial
confidence regions and the resulting airspace availability for UAM in response to dynamic operational
factors. The data-based approach allowed for a high-fidelity characterization of the Sao Paulo urban
airspace use patterns as well as for accurate predictions of the available airspace for UAM, bringing
novel insights and capabilities in support of dynamic and efficient urban airspace management.
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1. INTRODUCTION

Everyday, millions of people around the
world have the basic need of moving around
metropolises due to various reasons — commut-
ing to work, going to the airport, visiting a rela-
tive etc. — some of them traveling dozens of kilo-
meters through clogged roads to reach their des-
tination and spending more time than desired. A
research performed by the Brazilian Institute of
Public Opinion and Statistics (Ibope et al., 2014)
estimated that, in Sao Paulo, the average citizen
spends up to 167 minutes daily in road traffic
while commuting. The problem of urban mobil-
ity is not new, and many systems have been pro-
posed as alternatives to classic road transporta-
tion, such as subway and surface railways, elec-
tric light buses and others. Moving around above
the city, through the air, is an idea that has always
existed in popular imaginary, but the only way to
do it nowadays is by helicopter, which is inac-
cessible for most part of the population. Emerg-
ing Urban Air Mobility (UAM) is a new concept
that is coming to fulfill the gap of urban air trans-
portation, and has the potential of reducing costs
of commuting through the air and reducing road
congestion.

UAM is based on Electric Vertical Take-
off and Landing vehicles (eVTOL), a novel type
of aircraft that has been developed by different
companies for the last few years. A 74 bil-
lion dollar UAM market is expected to rise in
the next decade, with up to 23,000 eVTOL ve-
hicles operating globally (EmbraerX et al., 2019).
The importance of this new urban mobility sys-
tem is highlighted by the heavy road traffic cur-
rently observed in many big metropolises and by
the increasing need of people for faster mobil-
ity0. Hence, the introduction and development of
UAM may lead to great benefits, especially in the
scope of personal time management (FAA, 2020).

UAM is expected to introduce new complex
flight networks in low-altitude airspace over big
cities, especially below 3,000 feet Above Ground
Level (AGL) (Vascik et al., 2019). Hence, re-
architecting the urban airspace will be essential to
provide a safe environment in which these novel
operations can harmoniously cohabit with current
flights. This challenge brings a new level of com-

plexity considering that the urban airspace is al-
ready structured in an adequate and manageable
fashion, which is well-perceived as safe by the
population in general.

Currently, the airspace over cities is de-
signed to procedurally segregate aircraft, assur-
ing proper vertical and lateral separation at all
times. In large metropolitan regions served by
multiple airports, such as Sao Paulo, the problem
of organizing traffic becomes even more complex,
since it is necessary to prevent conflicts between
the active procedures of multiple closely located
airports. This usually translates into longer ar-
rival and departure procedures for each airport,
which ultimately leads to delays and lower fuel
efficiency. Hence, the addition of new vehicles,
UAM for instance, to these already busy types of
airspace becomes a problem, which is the central
theme of this paper.

The purpose of this work is to offer a data-
based approach for modeling the current patterns
of urban airspace use by traditional aviation in or-
der to identify and predict the airspace volumes
that are least constrained and therefore best acces-
sible for UAM flights. We select as case study the
Sao Paulo’s urban airspace, the largest metropoli-
tan region in Latin America. Nevertheless, the
methodology proposed in section 3. is designed to
be generally applicable in any other desired con-
text.

2. RELATED LITERATURE

The topic of urban airspace design and
management for integration of emerging UAM
operations has been subject of numerous studies.
Different authors have addressed the matter using
different techniques, from geometric approaches
supported on published procedures and topo-
graphic data, to flight trajectory data analytics
based on the application of machine learning al-
gorithms on Automatic Dependent Surveillance-
Broadcast (ADS-B) data.

Vascik et al. (2019) developed a geometric
framework that used only static, publicly avail-
able information, evaluated in multiple scenarios.
The authors defined four ConOps scenarios and
studied seven airspace constructs, as terrain clear-



ance, airports airspace clearance, special flight
rules areas, and others. Then, geometrically com-
bining all constructs, they were able to estimate
the airspace availability for UAM under their spe-
cific hypotheses and scenarios.

Regarding data-driven approaches, most of
them resort to flight tracking data gathered from
ADS-B networks or similar (Vascik & Hans-
man, 2019), (Murca, 2021), (Vascik & Hans-
man, 2019), (Eerland et al., 2016), (Eerland et al.,
2017), (Murg¢a et al., 2018), (Gariel et al., 2011),
(Eckstein, 2009), (Olive & Morio, 2018), (Murca
et al., 2020), (Olive et al., 2021).

Vascik & Hansman (2019) addressed the ur-
ban airspace availability analysis problem using
a statistical approach. The authors used Airport
Surface Detection Equipment - Model X (ASDE-
X) data rather than ADS-B in order to gather not
only commercial flight data, but also rotary-wing
and general aviation flight data. They suggested
the application of containment boundaries around
multiple observed trajectories of traffic depart-
ing and arriving at some of the largest airports in
the U.S. Then, they clustered the flight trajecto-
ries and mapped volumes of airspace around each
cluster centroid that were occupied by a certain
percentile of the flights of interest.

Murca (2021) addressed the problem of
identifying available volumes of urban airspace
for UAM operations using ADS-B data of arriv-
ing and departing traffic at Congonhas airport, the
most central airport in Sao Paulo, Brazil. The
author also analyzed the impact of adopting dif-
ferent lateral separation buffers (ATC-assumed
minimum lateral separation) to procedurally sep-
arate UAM from conventional traffic, and the
differences between integrating UAM dynami-
cally or statically. The author found that using
a reduced lateral separation criterion increased
airspace availability by up to 87%.

Gaussian-based probabilistic models have
been used to study the air traffic behavior. Eerland
et al. (2016) investigated the dispersion of flight
trajectories using Gaussian Processes; a similar
objective to Vascik & Hansman (2019). Eerland
et al. (2017) used the same model to quantify the
air traffic complexity inside an specific airspace
volume, aiming to provide a comprehensive map

to improve the visualization of the airspace com-
plexity. Both authors performed flight trajectory
clustering using DBSCAN prior to inputting its
results in the probabilistic model.

Addressing the matter of flight trajectory
clustering, several authors have tried different
techniques to properly identify spatial and/or tem-
poral patterns from flight tracking data. Hierar-
chical algorithms, for example, use the distance
between the observed points of a dataset to build
the clusters and have been explored by Rehm
(2010) and Delahaye et al. (2017). These algo-
rithms may be useful to identify trajectory clus-
ters within small datasets, since it is easy to im-
plement. Some of them are biased to globular
clusters and hence not suitable for flight trajec-
tory analysis, while others do not work well with
noise (Carvalho et al., 2021). This may be a prob-
lem in airspace characterized by the occurrence of
too many holding patterns or ATC vectoring.

Many authors have used density-based clus-
tering algorithms, such as DBSCAN (Gariel et al.,
2011), (Liu et al., 2017), (Murca et al., 2018),
(Murga et al., 2020), (Murca, 2021), (Eerland
et al., 2016), (Olive & Morio, 2018), (Olive et al.,
2021). DBSCAN works well with noise and out-
liers and is not limited to globular shapes, being
able to discover trajectory clusters of any form.
In a busy environment as a metroplex ‘s terminal
area (TMA), tactical air traffic flow management
may generate non-conforming trajectory behavior
typically regarded as noise (ATC vectoring, hold-
ing patterns, go around procedures and so on).
The algorithm can also deliver satisfactory results
without the need for the user to inform the num-
ber of clusters beforehand. Thus, it is safe to as-
sume that DBSCAN is a powerful tool for flight
trajectory data analytics.

Review of the literature shows that, while
several studies have succeeded to identify spatial
and temporal patterns from flight trajectory data,
few have attempted to leverage that knowledge to
predict the traffic behavior. That line of research
is where this paper builds itself upon, aiming to
propose data-driven models to identify and pre-
dict urban airspace availability for UAM opera-
tions, based on a comprehensive set of external
features that are found to impact the air traffic dis-
tribution.



3. METHODOLOGY

We developed a data-driven approach to
identify and predict urban airspace availability for
UAM operations. The methodology is based on
gathering flight tracking data and properly pro-
cessing it, performing a trajectory clustering anal-
ysis to identify traffic patterns, then estimating a
probabilistic model to forecast spatial confidence
regions for the traffic patterns and the resulting
airspace availability, which are displayed using
map visualizations. The methodology is summa-
rized in Figure 1 and detailed in this section.

3.1. Region of interest

Our study case is the Sao Paulo metropoli-
tan region, especially the urban airspace sur-
rounding Congonhas (CGH) and Guarulhos
(GRU), hence our Region of Interest (ROI) is a
part of the Sao Paulo TMA. Also, since UAM is
expected to fly at low altitudes — between 400 ft
and 1,500 ft AGL (EmbraerX, 2020), and max-
imum 3,000 ft AGL (Vascik et al., 2019) — we
define 3,000 ft as the superior limit of the ROI,
which corresponds to an altitude a little higher
than 5,500 ft MSL (above Mean Sea Level) for
Sao Paulo.

3.2. Data

The emergence of ADS-B turned incredi-
bly large amounts of flight tracking data easily
accessible to air traffic managers, flight planners,
researchers and others. ADS-B is a surveillance
technology incorporated into regular transponder
units in which an aircraft automatically broad-
casts its navigation data (speed, altitude, heading
etc) in regular intervals. This work uses ADS-B
data gathered inside the Sao Paulo TMA to map
arrival and departure flows at CGH and GRU and
understand the behavior of commercial air traffic
inside the urban airspace.

In this work, we relied on flight track-
ing data from the OpenSky Network (Schifer
et al., 2014) gathered for the whole month of
November 2019 using the OpenSky’s REST API.
The database consists of almost 1 million obser-
vations, corresponding to approximately 15,000
flights. It contains, among other attributes, in-

formation about aircraft callsigns, destination and
origin airports and, most importantly, trajectory
data (latitude, longitude and altitude) for each
timestamp. The acquisition rate is about 6 per
minute.

Data preprocessing was conducted to filter
the observations inside the terminal area: all tra-
jectory observations not further than 40 nautical
miles from the airport of operation and not higher
than 19,500 feet were filtered, and to eliminate
flights with incomplete or noisy trajectory data
based on sanity checks. Figure 2 presents a vi-
sualization of the filtered flight tracking data, sep-
arately for CGH and GRU, respectively.

In addition, each object (line) of that dataset
is a single observation of some flight at a single
timestamp, but, before clustering, it was neces-
sary to change its structure. We restructured the
dataset to represent each flight with a single line,
given by a time series of trajectory data (latitude,
longitude and altitude). Moreover, as each differ-
ent flight had a different number of observations
inside the terminal area, it was necessary to re-
sample the trajectory data to represent each ob-
ject with the same number of attributes, making
the dataset suitable for the clustering step.

The probabilistic model needs meteorologi-
cal and other external inputs in order to learn how
air traffic is distributed depending upon weather
and different airport runway configurations. We
used meteorological information to forecast ac-
tive runway configurations and procedures. The
meteorological data were obtained from historical
METAR messages for CGH and GRU, which are
available via REDEMET’s API (Redemet, 2022).
METARS are standardized messages issued by lo-
cal aviation authorities to inform aircraft of an
airport’s actual meteorological situation, includ-
ing wind and visibility characteristics. Being fed
with this information, the probabilistic model is
capable of learning the spatial distribution of traf-
fic given the meteorological condition.

3.3. Trajectory clustering analysis

A trajectory clustering analysis is first per-
formed to identify air traffic patterns in the ter-
minal airspace. A busy TMA is typically highly
structured with arrival and departure procedures
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Figure 1 Summary of the methodology.

Figure 2 Filtered flight tracking data inside Sao Paulo TMA - CGH (left) and GRU (right).

that allow aircraft to transition between the air-
port and the en route airspace safely. The high
density of operations usually makes actual tra-
jectories subject to deviations from the planned
flight procedures, since ATC vectoring, holding
patterns and direct heading clearances are typi-
cally used for tactical air traffic flow management.
The standard routes and the natural variability in
their execution produce the core underlying pat-
terns that we seek to identify with the trajectory
clustering analysis. Yet, these ATC control ac-
tions may also create noise trajectories that devi-
ate significantly from nominal traffic patterns.

Therefore, we use the Density-Based Spa-
tial Clustering of Applications with Noise (DB-
SCAN) algorithm to cluster the trajectory data.
DBSCAN enables the identification of the core
trajectory patterns in the presence of abnormal
trajectory profiles. Besides the ability to handle
noise, DBSCAN deals well with non-convex clus-

ters, does not require the number of clusters to be
defined a priori and has been successfully used
for clustering trajectory datasets in various do-
mains.

3.4. Probabilistic air traffic model

The purpose of building a probabilistic
model is to learn the spatiotemporal distribution
of air traffic and to make predictions based on
external inputs, such as meteorology. We model
the trajectory patterns identified in the clustering
phase with a Gaussian Mixture Model (GMM)
(McLachlan & Basford, 1988). In other words,
we assume that the spatial air traffic distribution
within each cluster can be modeled with a Gaus-
sian density and that the spatial distribution of air
traffic in the TMA is given by a weighted sum of
Gaussian densities. The GMM is mathematically
defined as follows:
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X is a multivariate random variable that
represents the aircraft trajectory and a specific
weather condition; it results from concatenating
two vectors: X7, which contains the trajectory in-
formation, and Xy, which contains the weather
information;

7 are the mixture weights;

K is the number of clusters (patterns, Gaus-
sian components);

U is the mean vector of the Gaussian density
that models the y’h procedure;

Y, is the covariance matrix of the Gaussian
density that models the y"" procedure.

Fundamentally, Gaussian  component
weights cannot be individually greater than one
and sum up to one:
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After the model estimation, we apply it to
make predictions of active procedures, their spa-
tial traffic distribution and the resulting airspace
availability given the meteorological conditions.
This is accomplished by the computation of
marginal and conditional densities. Eqs. 4 and
5 express the probability of occurrence of the
y" procedure given known weather conditions.
Bayes’s theorem is used to calculate that from the
marginal distribution of weather conditions Xy
given the " procedure, which is Gaussian with
mean vector Uy and covariance matrix Xy ww,
as in Eq. 6. This allows us to express the prob-
ability of occurrence of the y'" procedure given
input weather conditions as in Eq. 7.
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To model the spatial distribution of air traf-
fic for a known weather condition, we need to
compute the conditional probability distribution
of aircraft trajectories X7 given input meteorolog-
ical conditions Xy for the y* procedure. Bishop
& Nasrabadi (2006) shows that this probability
distribution is Gaussian with mean vector (7 and
covariance matrix Xy, as expressed by Eqs. 8 to
12.
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Finally, we can use the marginal and condi-
tional densities to forecast active procedures and
their spatial confidence regions. Eq. 13 defines
the set S of procedures forecast to be active for
a given probability threshold y. Eq. 14 expresses
the confidence region Ry, of the spatial distribution
of air traffic for a significance level o for each ac-
tive procedure y.

S=1{y:m >y} (13)

Ry = {XT . p(XT/Xw,Y :y) =1- OC} (14)

4. RESULTS AND DISCUSSION

4.1. Identification of traffic patterns

The flight trajectory clustering analysis
with DBSCAN was performed separately for each
airport and type of operation — CGH departures,
CGH arrivals, GRU departures and GRU arrivals
— for improved clustering performance. Table
1 presents the number of clusters identified and
the percentage of data noise encountered for each
flow. As an example, the clusters identified for
CGH departures are displayed in Figure 3.



Table 1 Clustering results.

Flow # clusters | Noise
CGH DEP 6 10.3%
CGH ARR 5 9.6%
GRU DEP 6 12.1%
GRU ARR 6 11.3%

Figure 3 Clusters - CGH departures.

4.2. Air traffic spatial distribution

After the clustering analysis, a GMM was
estimated for each airport and type of operation
based on the traffic patterns identified. The model
allowed us to examine the spatial distribution of
air traffic inside each cluster. For a given al-
titude range, a spatial confidence region in the
form of an ellipse is determined. Hence, we can
find certain airspace regions where air traffic has
some probability of occurring, ultimately deter-
mining a busy and unavailable portion of the ur-
ban airspace.

In this section, we present the resulting con-
fidence regions for three levels of confidence:
90%, 95% and 99%, considering an altitude layer
from Ground Level (GND) to 3,000ft AGL. In
the maps displayed in Figure 4, the ellipses rep-
resent the confidence regions of each cluster for
these three different confidence levels, and Fig-
ure 5 presents the results for two different altitude
layers.

4.3. Prediction of airspace availability

Once the probabilistic model was esti-
mated, we were able to make predictions of the

urban airspace availability for any meteorologi-
cal condition. As an example, Figure 6 shows the
results of this prediction at a level of confidence
of 95% and a probability threshold of 5% for the
following conditions: marginal VFR, winds com-
ing from the southeast at 10 knots. Results for
two different altitude layers are presented: below
1,500ft AGL and below 3,000ft AGL.

The confidence regions are larger for the
altitude layer below 3,000ft AGL than below
1,500ft AGL, with an exception for GRU depar-
tures, which might have been caused by the qual-
ity of the flight tracking data used. Even though
this conclusion needs further and deeper inves-
tigation, it is a first step towards understanding
that it will be critical to properly allocate special
routes and dedicate exclusive altitude layers for
UAM operations, a concept already introduced by
various publications and Concepts of Operations
available.

An analysis of the GMM'’s predictive per-
formance was done to evaluate the quality of the
model. As expressed by Eq. 13, a certain pro-
cedure is labeled as active if the probability of
its occurrence is equal or greater than a thresh-
old value y. Thus, by testing different values for
that parameter, we evaluated the sensibility and
accuracy of the prediction model. The accuracy
was defined by the mean of the model’s success
rate, measured day by day, for the test dataset (one
third of the whole dataset, randomly selected).
The results are displayed in Table 2.

It is evident that for a probability threshold
Y of 0%, every single learned procedure would
be active regardless of the input meteorological
condition. By increasing the threshold to 1% and
5%, we find that the average number of predicted
procedures decreases, indicating that the model is
able to reasonably distinguish between active and
inactive procedures and the airport runway con-
figuration resulting from a given meteorological
condition. Naturally, such prediction is not per-
fect, and the model’s accuracy decreases with the
use of higher probability thresholds. However,
we observed an accuracy greater than 95% for a
threshold of 5% that predicts nearly half of the
patterns as active, which is very promising.
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(a) Level of confidence: 90% (b) Level of confidence: 95 % (c) Level of confidence: 99 %

Figure 4 Confidence regions below 3,000ft AGL — CGH departures (red) and arrivals (green), and GRU
departures (purple) and arrivals (orange).

(a) Below 1,500ft AGL (b) Below 3,000ft AGL

Figure 5 Confidence regions at 95% level of confidence.

5. CONCLUSIONS

Table 2 Model predictive performance results — 95%
level of confidence.

The application of clustering techniques

# predicted followed by probabilistic analysis proved to be
Flow active Accuracy  useful to understand multiple characteristics and
procedures  (mean) the dynamics of urban airspace. Understanding
(mean) how air traffic actually behaves inside urban ter-
0.00 6 100.0% minal areas is of utmost importance to properly
CGHDEP 0.01 47 98.0% integrate UAM to existing operations.
0.05 35 96.8% One very evident conclusion taken from the
results is that the higher the altitude the wider the
0.00 > 100.0% dispersion of air traffic. Although this was al-
CGHARR  0.01 3.5 98.9% ready expected, it helps us to better understand
0.05 2.7 97.8% how the TMA is actually structured, i.e. to un-
0.00 6 100.0% derstand at which regions — or at which distances
GRUDEP 0.01 5.1 98.8% from the airports — the traffic merges into a single
0.05 3.9 98.1% path or split into many others. For example, it is
0.00 6 100.0% notable from the maps presented that the air traf-
fic dispersion is much wider for traffic operating
GRU ARR 0.01 4.3 98.1% at CGH than GRU.
0.05 32 97.4%

Regardless of the airport or meteorologi-



(a) Below 1,500ft AGL

(b) Below 3,000ft AGL

Figure 6 Example: prediction of urban airspace availability — 95% level of confidence and 5% probability
threshold.

cal condition, air traffic is much more dispersed
during departure than arrival. This observation
is expected and coherent with the way how In-
strument Flight Rules (IFR) procedures are elab-
orated in busy airspaces: usually, arriving aircraft
supported by Instrument Landing Systems (ILS)
need at least 5 to 10 NM of straight flight collinear
to the runway, while departure traffic can take
off and readily turn into the planned procedure.
This leads us to expect that a wider region of the
airspace should be unavailable for UAM on the
sector dedicated for take offs.

By applying the GMM with different levels
of confidence, we found that, although higher lev-
els of confidence generated wider confidence re-
gions, the differences in dimensions were slight.
By contrast, the altitude layer where the analysis
was done impacted significantly airspace avail-
ability.

Finally, our predictive model showed itself
to be useful to provide better comprehension of
two factors regarding airspace occupation: how
widely air traffic distributes itself and how many
individual procedures are being used. Since the
model is capable of delivering these outputs after
being fed with meteorological information, one
can forecast in advance the traffic patterns most
likely to be active, and hence determine the prob-
able urban airspace availability for UAM opera-
tion. This allows for smarter and more efficient
planning by both ATM agents and UAM opera-
tors.
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